

Understanding and Managing E-commerce's Impact on Urban Traffic: Insights and Strategies for MPOs

NYSAMPO 2025 Planning Conference Syracuse, NY Wednesday, May 14, 2025

Cara Wang

Professor Civil and Environmental Engineering Rensselaer Polytechnic Institute wangx18@rpi.edu

José Holguín-Veras William H. Hart Professor Director of the VREF CoE for Sustainable Urban Freight Systems Rensselaer Polytechnic Institute jhv@rpi.edu

Rensselaer Polytechnic Institute's Research Areas

Key Research Areas

- Data Acq uncover p
- Sustaina sustainabi
- Freight E congestion
- Freight D
- Disaster
- Decision
- Transpor
- Emergin
- System I

Selected Research Projects and Funding Sources

NCFRP and NCHRP Projects Led by Rensselaer

RPI Experience

- Most Published and Cited Freight Research Group Worldwide
- Published the **first** paper on the asymmetric relationship between ecommerce deliveries and personal shopping trips
- Authored numerous publications on e-commerce's impacts on both passenger and freight systems
- Such experience and expertise are needed for recommending methods aligned with agency resources and integration needs.

Agenda

- Overview of Ecommerce and Its Impacts
- Part 1- Tracking the Shift Identifying and Collecting Data on E-Commerce's Urban Footprint
- Part 2- Anticipating Demand: Estimation Methods for E-Commerce Traffic Impacts
- Part 3- Digital Solutions for Urban Freight: **Tools** to Support MPO Decision-Making
- Part 4- From Insight to Action: Strategic Approaches for Managing E-Commerce Traffic
- Discussion

E-Commerce Growth Trends

•U.S. annual e-commerce sales rose from **\$0.027 trillion in 2000 (0.92%)** to **\$1.1 trillion in 2023 (15.3%)**.

•Average annual growth rate: **17.4%**.

•Steady growth observed, with **fluctuations in 2020–2021** due to the COVID-19 pandemic.

Q4 2018 Q4 2019 Q4 2020 Q4 2021 Q4 2022 Q4 2023

- Electronics and appliance sales share has decreased, despite being early adopters of e-commerce.
- General merchandise (e.g., household goods) increased from 10.3% (2018) to 12.2% (2023).
- Food and beverage e-commerce rose from 1.2% (2018) to 2.7% (2023).
 - These goods are integrated into daily routines, potentially reducing in-person dining and grocery trips.
 - Characterized by reliance on fast last-mile delivery services (e.g., Instacart, UberEats).
 - Result: increased delivery trips, decreased store visits.

Tracking the Shift: Introduction

- E-commerce has reshaped urban traffic patterns through both direct and indirect mechanisms.
- **Public agencies** face growing challenges in addressing these impacts.

Infrastructure Stress and Environmental Impact

Stopping and Curbside Management Issues

Coordination Challenges

Supply Chain Complexity

- Previously bulk-based systems have evolved into intricate, decentralized networks.
- These changes have created new transportation demands across all stages.
- Agencies require tailored data and models to accurately predict traffic impacts.
- **Stages** of the E-Commerce Supply Chain:

Interdependency of Freight and Passenger Trips

•E-Commerce Impacts Both Freight and Passenger Transportation

- •Shopping demand drives **freight deliveries** and **consumer travel behavior**.
- •Effects extend beyond simple substitution of shopping trips.

•E-Commerce Does Not Always Replace In-Store Shopping

- •Many consumers **still shop at physical stores** even while using e-commerce.
- •Additional trips can be **induced**.

Resulting Travel Patterns Are Complex

•E-commerce can **substitute**, **induce**, **or complement** passenger trips.

Socioeconomic Differences Influence Impact

Key Traffic Impacts

Increased Delivery VMT (Vehicle Miles Traveled):

- VMT is a more comprehensive metric than trip counts, as it includes **trip length**.
- Even with fixed delivery demand, e-commerce tends to **increase VMT** due to:
 - Smaller delivery vehicles making more frequent trips.
 - Returns and exchanges creating reverse logistics flows.
 - Failed deliveries, lost items, or theft causing repeated trips.
- Estimating VMT distribution across urban road networks is **crucial** to understanding overall impacts.

Increased Truck Generation from Warehousing and Distribution:

- Warehousing and distribution centers (especially in suburban/industrial zones) significantly increase truck traffic.
- This traffic contributes to **congestion**, emissions, and road wear.
- Requires focused data, modeling, and mitigation strategies.
- **Concentration of Delivery Traffic in Residential Areas:**
- Leads to bike/pedestrian safety risks, curb space competition, and double-parking.
- Results in **localized congestion** and increased emissions.
- This issue is often overlooked but is central to the study's focus.

Underrecognized or Emerging Impact Areas

Variety of Delivery Vehicles and Services:

- Fleet diversity includes trucks, vans, cargo bikes, passenger cars, and delivery robots.
- Operators range from major carriers (UPS, DHL) to contracted drivers (FedEx contractors) to crowdsourced platforms (Amazon Flex, Uber Rush).
- Each vehicle type has different urban impacts and regulatory needs.

Time-of-Day Delivery Patterns:

- Deliveries are increasingly happening during **off-peak hours**.
- While this can reduce peak congestion, high-demand periods still see traffic surges.
- Requires consideration of **temporal dynamics** in planning models.

Mixed Impacts on Shopping Trips:

- E-commerce can **reduce** or **induce** passenger trips depending on context.
- Some trips are avoided; others are created for returns, pickups, or product browsing.
- Planning must address **both freight and passenger effects**.

Employment-Driven Commuting to Warehousing/Distribution Centers:

- E-commerce fulfillment centers require large workforces.
- **Commuter traffic** to areas often **lacking transit options** or designed for lower volumes.
- Adds a **non-freight dimension** to e-commerce traffic impact.

Local Variability in E-Commerce Traffic Impacts

Impacts Vary by Local Context:

- E-commerce effects are not uniform across urban areas.
- A single data set, model, or solution cannot address all urban scenarios.
- The guide will be designed to be flexible and adaptable by considering diverse local factors.

Key Factors Contributing to Variability:

- Urban Structure and Density:
 - Dense urban areas:
 - High retail employment density may reduce e-commerce demand.
 - Compact layouts shorten trips; sprawling layouts increase VMT.
- Consumer and Commodity Characteristics:
 - Demographics like age, income, education influence online shopping habits.
 - Commodity type affects logistics:
 - Interactions with passenger travel differ: 2021 RPI survey findings show shopping behaviors vary by product and demographic.
- Existing Transportation Systems and Technology:
 - Warehouse location and road connectivity affect delivery efficiency.
 - Congested or poorly connected areas experience higher delivery VMT.
 - Emerging tech (e.g., AVs, drones) may shift patterns, reduce traditional traffic.

Tracking the Shift: Identifying and Collecting Data on E-Commerce's Urban Footprint

Examining Emerging Data Sources (NCHRP 08-192)

Commercial Data Availability:

- Sources include NielsenIQ, Colography, ComScore, Business of Apps.
- Used to estimate regional delivery volumes and track service providers.
- Public Data Sources:
 - Includes household travel surveys, industry reports, and academic studies.
 - Offers accessible data for tracking long-term ecommerce trends.
- Vehicle Telematics and Location Services:
 - Tools such as **INRIX**, **Streetlight**, and **Stoovo**:
- Shopping Behavior Insights:
 - Data from Factori, Forrester, Replica describe:
 - Supports a **rarely studied intersection** of e-commerce and mobility.
- Facility Location Data:
 - Public datasets: e.g., Census employment data, MWPVL.

- Commercial datasets: e.g., CoStar, Data Axle.
- Provide detailed information on warehouses and fulfillment networks.
- **Retail and E-Commerce Establishment Data:**
 - Sources: SafeGraph, Predik, Xtract, Placer.ai, Brick Meets Click, Digital Commerce 360.
 - Enable mapping of **retail/e-commerce footprint**, including

Primary Data Collection by Agencies:

- Agencies are increasingly:
 - Adding e-commerce-specific questions to surveys.
 - Monitoring curb use with **sensors and cameras**.
 - **Collaborating with e-commerce firms** to obtain delivery data.
- Some agencies have secured formal/informal datasharing agreements on:
 - Package deliveries
 - Food deliveries
 - Other mobility patterns

Examples of Data Collection for E-Commerce

Type of Data	Public Data	Commercial Data	E>	camples of Data Collection Opportunities
Delivery Traffic and Parking Data: Types of vehicles (trucks, vans, passenger vehicles, (trucks, vans, passenger vehicles, cargo bikes, EVs, hand carts, etc.). Delivery tours, routes, stops, deliveries per tour, and other operational characteristics.	 No publicly available data exists that focuses on deliveries Data sets on warehouse and retail establishment freight generation (e.g., ITE Trip Generation Manual, NCFRP Research Report 37, etc.) Commercial vehicle speed data on NHS in NPMRDS Commercial vehicle statistics from VIUS Many federal data sets cover long-haul/middle- (e.g., FAF, CFS, STB Waybill Sample. BTS T-100 reports, USACE Waterborne Commerce) 	Plethora of location-based data sets describing the movements of commercial vehicles (e.g., INRIX, ATRI, Geotab, Replica, Streetlight, RITIS, etc.). However, teasing out e-commerce deliveries is generally challenging. New data sets tracking on- demand deliveries, such as Stoovo and Uber Movement. New data on parking, curbs, sidewalks (e.g., INRIX Curb Analytics, CurbIQ, etc.)	A A A A	Direct data collection from businesses and instrumenting of delivery vehicles (e.g., NYCDOT collecting data from delivery companies/cargo bikes) Commercial driver diary surveys Collection of traffic data from fulfillment centers, as done in the Inland Empire Video monitoring of high-traffic curbs (Portland Bureau of Transportation).Vehicle data from DMV registrations and inspections

TE

RPI's Expertise and Experience on Data Processing

- Familiarity with both public and commercial e-commerce datasets.
- Capable of integrating new data sources and processing techniques, including video/image recognition and edge computing, to enhance real-time decision-making and system responsiveness.
- Experience working with agencies across the U.S. has built strong understanding of:
 - Agency data needs
 - Varying technical and analytical capabilities

Anticipating Demand: Estimation Methods for E-Commerce Traffic Impacts

Freight and Freight Trip Generation Models

Some of these trends have implications directly related to the scope of this paper. The prospect of e-commerce generating a significant number of small deliveries, most likely in small delivery vans, and the resulting increase in urban congestion should call the attention of transportation planners to the study of the decision-making processes that determine the selection of the type of commercial vehicle. Among other things, this would enable the implementation of policies aimed at increasing the use of environmentally friendly commercial vehicles, and/or encourage the use of those types of vehicles that produce less externalities, relative to the amount of cargoes they transport.

Holguín-Veras, J. (2002). "Revealed Preference Analysis of Commercial Vehicle Choice Process." <u>Journal of</u> <u>Transportation Engineering 128(4): 336.</u>

This is What It Used to Be (Before Ecommerce)

Estimates produced by the Freight and Service Trip Generation Software (FASTGS)

This is What It Became with Ecommerce (Before COVID-19)

Estimates produced by the Freight and Service Trip Generation Software (FASTGS)

This is What Became with Ecommerce (During COVID-19)

NCHRP RESEARCH PROGRAM JOINT RE NCFRP NATIONAL COOPERATIN REIGHT RESEARCH **REPORT 19** ROGRAM **Freight Trip Generation** and Land Use NATIONAL NCFR COOPERATIVE FREIGHT RESEARCH ROGRAM **RESEARCH REPORT 37** TION RESEARCH BOARD OF THE NATIONAL ACADEMIES cretary for Resea Using Commodity Flow Survey Microdata and Other Establishment Data to Estimate the Generation of Freight, Freight Trips, and Service Trips Guidebook

NATIONAL

HIGHWAY

COOPERATIN

Freight Generation / Trip Generation Models

- For more than 15 years:
 - Collected thousands of surveys
 - Establishment level
- Estimated FTG models
 - Establishment-level
 - Economic based
- Estimated Freight Production models with confidential CFS
- Developed aggregation techniques
- Validated them
 - Good models, though imperfect
 - Transferable in US conditions

Freight Orders vs. Freight Trips

Traditional FTG Models Do Not Work Well, We Know That...

Notation:

Identical stores that Empty vehicle-trip get one delivery/day Loaded vehicle-trip Commodity flow

Key Insights:

- FTG changes from place to place, even if establishments are the same!
 - Ordering and shipping practices are stable
- Using orders and shipments to estimate FTG is better than using FTG directly

Freight Trip Attraction =

(Number of deliveries) (Average number of deliveries per vehicle-trip)

Freight Trip Production =

(Number of shipments sent out) (Average number of shipments per vehicle-trip)

Freight Trip Generation Applications

Estimates of Internet Deliveries to Households

EOE

Ground

1.5 Million Packages a Day: The Internet Brings Chaos to N.Y. Streets

The push for convenience is having a stark impact on gridlock, roadway safety and pollution in New York City and urban areas around the world. fedex.com 1.800.GoFedEx

Ecommerce Deliveries to Manhattan

Deliveries at the Establishment Level

New York, NY: Midtown Manhattan (10001)

Application #2: Estimating Freight Production Using Freight Production Models

New York State: Freight Production Patterns

Freight Production by ZIP Code 2007

CITE
Freight Production by ZIP Code 2011

Changes in Freight Production by ZIP Code 2007 vs 2018

Comparison in Freight Production by Sector 2007 vs 2018

#1 ZIP 62207 Metro East Industries

#2 ZIP 62207 e

2007

2018 with addition of CoPart – auto salvage yard

Freight Demand Synthesis

Freight Demand Synthesis

- Lack of data about freight demand is a major issue
 - Costly, time consuming, requires a lot of effort
 - Gets out of date very quickly
 - Old way to develop freight demand models:
 Generation → Distribution → Mode Split → Traffic Assignment
- Instead of collecting expensive/time-consuming data FTS uses advanced models to infer demand from easy-to-get secondary sources such as traffic counts
 - Inexpensive, quick to obtain, easy to collect
 - Could be updated as needed
 - New way to develop freight demand models: Generation & Observed Traffic → Distribution (or FTS)

Objective: Infer the Truck Trajectories that Match Traffic Counts

64

Entropy Maximization Tour Flow Model

- Tour choice: To estimate sensible node sequences
- Tour flow: To estimate the number of trips traveling along a particular node sequence

Applications of Freight Demand Synthesis: Bangladesh Freight Demand Model, Super Truck 3 Model

FG Estimates: Bangladesh Freight Demand Model (World Bank)

• FG: Spatial distribution by industry cluster

74

Estimated Traffic Flows: FODS

Concentrated more in the central core (ports of entry/exit flows are removed)

Model Application

Benefits for various scenarios

	Impacts on Intercity Freight Traffic						Economic Impacts		
C' -	Domestic		Import / Export		Total		Savings (\$ million/year)		
Scenario	Veh-hr	Veh-km	Veh-hr	Veh-km	Veh-hr	Veh-km	Veh-hr	Veh-km	Total
Base Case	138,594	4.789E+06	136,844	4.960E+06	275,438	9.749E+06	-	-	-
BC+Padma Bridge	133,106	4.669E+06	132,761	4.790E+06	265,867	9.459E+06	14.787	27.817	42.604
BC + PB + Ferry 1	132,346	4.651E+06	132,692	4.789E+06	265,038	9.440E+06	16.068	29.690	45.757
BC + PB + Ferry 2	132,575	4.642E+06	132,688	4.784E+06	265,263	9.426E+06	15.719	31.007	46.726
BC + PB + Ferry 4	133,017	4.666E+06	132,760	4.790E+06	265,776	9.456E+06	14.927	28.084	43.011
BC + PB + Ferry 5	133,097	4.668E+06	132,761	4.790E+06	265,858	9.458E+06	14.801	27.944	42.745
BC + PB + Ferry 6	132,799	4.674E+06	132,333	4.819E+06	265,132	9.493E+06	15.923	24.563	40.486
BC + PB + Ferry 4 & 5	132,896	4.660E+06	132,751	4.789E+06	265,647	9.448E+06	15.127	28.867	43.994
BC + PB + Ferry 4 & 5 & 6	132,538	4.664E+06	132,270	4.816E+06	264,808	9.480E+06	16.422	25.805	42.227
BC + PB + Ferry 1 & 2	131,804	4.623E+06	132,624	4.782E+06	264,428	9.405E+06	17.010	32.993	50.003
BC+Padma Bridge (N-40Kmph)	115,896	4.657E+06	121,974	4.769E+06	237,870	9.425E+06	58.042	31.061	89.103

Freight Demand Modeling I-81 Corridor Super Truck 3 Volvo Team

Digital Solutions for Urban Freight: Tools to Support MPO Decision-Making

GPS Data Collection and Processing

GPS Computer Systems: CO2 Emissions Day vs. Night

Costs vs. Emissions

Freight And Service Trip Generation Software (FASTGS)

Freight And Service Trip Generation Software (FASTGS)

SCHOOL OF ENGINEERING

Center for Infrastructure, Transportation, and the Environment (CITE)

ABOUT US TEAM

NEWS TRAINING & OUTREACH

RESEARCH SOFTWARE & TOOLS

COE-SUFS CONTACT US

Software & Tools

Type of initiatives # Land Use I Issaeholder Engagement I Transportietion	Initial This applic Excellence Service op	ive Selector for Improving Frei ation has been on funded by the Transportation Resourch for Soutainable Unlaw Proglet Systems. Also of the twiftig problems providents on som the te	ght S Hours	lystem Per (198) national Cos national containe ()	formance a specifice finight fee risits of the unique	and Freight- and Pragan Pojec decement describe	Efficient Lanc t - Improving Preight Sys gomentiel solutions	f Use sex Perior
Nature of the Problem	View Se	lected Clear Selected						
er Select All er Congestico er Livability token er Logitiks Sprawl	Select	Inductive Statute	PDI	initiative Type	Public	Privata Investment	implementation Time	Risk of S Cossequ
al Robal el Pollution al Sality al Systematic Inefficiencies	н.	Develop a Preight Efficient Land Use (PELU) Plan	-	Land Use	1.046	Norm	Medium	Note
		Freight Ouster Development (Freight Wilages)	â	Land Use	High / Very High	rigs	Reduct /l.org	Hodenst
Geographic Scope U Telest All CopyOSA Ana CopyOSA D Telestor D Tel	8	terpresent a Fright Efficient Land Use (FELD) Program		12401100	Moderate/ mgs	Lów/High	Medium	low/m
	9	Halti-Model Logistic Developments/Intermodel Terminals	a	Land Use	High/Mary High	High / Very High	Wedurs/Long	Rodenst
	85	Use Tax manufiles	-	Land Use	Moderate / High	Noderate	Reduct	Low
Select Al Advect Al Advect Al Advect Al Double Parking Indoquation framouture Indoquation framouture Long the fill (consenses Long the fill (consenses Double Parking Issue Debr Parking Issue Throng the fill Intern Parking International Configure Throng the fill International Configure Throng the fill International Configure Throng the fill	Showing 5	possible solution						

Ways to improve freight system performance

The Initiative Selector for Fostering Freight System Performance, Energy Efficiency, and Freight-Efficient Land Use acts as an easy-to-use web-based tool to suggest potential initiatives for practitioners to fix urban freight problems.

- · Presents a decision-support system for solving issues related to urban deliveries
- Proposes several freight demand, parking, and infrastructure management recommendations, and vehicle-related strategies
- Provides solutions that foster energy efficiency and freight-efficient land use Summarizes advantages, disadvantages, and level of costs for various implementation levels and time frames

Estimating freight and service demand

The **Freight and Service Activity Trip Generation Software (FASTGS)** estimates the number of daily freight deliveries, freight shipments, and service trips attracted at the establishment or ZIP Code level.

This software helps to:

Understand the environment of functions and complete activity in a building or an environment.

Behavioral Micro-Simulation (BMS)

Behavioral Micro-Simulation (BMS) Runner Up of the Edelman Prize⁸⁸

The BMS uses as input: initiatives, network, behavior models

Behavioral Micro-Simulation (BMS) for Deliveries

- Behavior along e-commerce logistics
 - Key links in the supply chain
 - Producer to Distributor
 - Distributor to Receiver
 - Producer to Receiver
- Approach: Simulate the tours required for delivering :
 - Supplies to/from commercial establishments (Business-to-Business) → BMS-B2B
 - Deliveries to households (Business-to-Consumers) → BMS-B2C
 - Estimate emissions, costs, VMT, etc. for the delivery tours

Behavioral Micro-Simulation: B2B

 The BMS-B2B simulates the flows at the various stages of supply chains to analyze effectiveness of different strategies

Modeling Delivery Tours in Troy

Echelon		Metric	Baseline
Gateways to Large		Trips	112
	All sectors	Tours	112
		VMTs	559
Gateways to Small	All sectors	Trips	2,078
		Tours	459
		VMTs	6,098
Small to Small	All sectors	Trips	1,385
		Tours	198
		VMTs	2,629
	3,575		
	769		
	9,286		

Total Cost by Echelon

Differential Effects on Freight VMT

Examples of B2C Delivery Tours

Method: Assessing Patterns and Sensitivity of E-commerce Delivery Tours with Microsimulation

Description: Patterns of delivery tours, as well as their sensitivity to changes in parameters, could help evaluate the impacts of different policies on e-commerce delivery activities. Simulation models can be used to examine the various stages of freight tour generation, and to analyze the effects that different initiatives would have on delivery activity and externalities generated in a study area. These analyses can be conducted at various geographic scales, ranging from metropolitan areas to towns, and can be done at different levels of detail, depending on the data available. The type of freight tours simulated will depend on the tool being used, which could focus on business-to-business or business-to-consumer tours.

Data:

- Freight trip generation by TAZ (for households, and by freight industry sector for commercial establishments)
- Interconnections between industry sectors (e.g. using Use Tables built from the Commodity Flow Survey (CFS) from the US Census Bureau and the Input-Output (IO) account from the US Bureau of Economic Analysis)
- Statistical distribution of the number of delivery stops by industry sector

Example: A Strategy of Household Delivery Consolidation in the

General Process

	Base	1 x	2 x
Tours	5,285	4,587	4,722
Deliveries	1,178,004	1,026,473	1,025,590
Stops	877,388	785,640	784,123
Interzonal Cost	\$681,409	\$613,351	\$616,058
Intrazonal Cost	\$2,681,724	\$2,409,092	\$2,404,974
Total Cost	\$3,363,133	\$3,022,442	\$3,021,032

policies that focus on reducing intrazonal costs, such as demand-side strategies, would have a greater impact on overall e-commerce delivery costs.

Web-based Interactive Guide

Once you specify the issue(s), you get suggestions...

Please give it a try at: https://cite.rpi.edu/iselector/ Rensselaer SEARCH SCHOOL OF ENGINEERING Center for Infrastructure, Transportation, and the Environment (CITE) SOFTWARE & TOOLS ABOUT US TEAM NEWS **TRAINING & OUTREACH** RESEARCH COE-SUFS CONTACT US Initiative Selector for Fostering Freight System Performance, Energy Efficiency, and Freight-Efficient Land Use Type of Initiatives Energy This application has been co-funded by the Transportation Research Board's (TRB) National Cooperative Freight Research Program Project - Improving Freight System Performance in Metropolitan Areas and Land Use the VREF Center of Excellence for Sustainable Urban Freight Systems. Stakeholder Engagement Select aspects of the traffic problems you seek solutions to on the left. The results will contain links to all the unique documents describing potential solutions. □ Transportation Nature of the Problem Search within results View Selected Clear Selected Select All Congestion Initiative Public Private Implementation **Risk of Unintended** Initiative Name Select PDF Investment Time $\wedge \downarrow$ Consequences ∕√ Group $\wedge \downarrow$ Livability Issues Type Investment Logistics Sprawl **Co-Location of Auxiliary Facilities Near Major** Land Use Low / High Low / High Medium / Long Low Long-Term □ Noise Gateways Planning Pollution □ Safety **Create Logistic-Focused Land Banking** Systematic Inefficiencies Land Use Low / High None Medium / Long Low Long-Term PDF Planning **Geographic Scope Create Special Purpose Districts** Land Use Low Low / High Short Moderate Zoning PDF Select All City/MSA Area **Densify Logistic Activities Towards the Urban** Land Use Moderate / Very High Medium / Long Low / Moderate Long-Term

From Insight to Action: Strategic Approaches for Managing E-Commerce Traffic

Cargo Bikes and E-Bikes

• **Overview:** Low-emission, compact delivery vehicles ideal for dense urban areas.

Benefits:

- Reduce emissions and noise pollution
- Improve curb and sidewalk access
- Enhance safety for non-motorized users

MPO Strategies:

- Designate cargo bike delivery zones in high-demand districts
- Provide micro-mobility support infrastructure (e.g., loading pads, secure bike lanes)
- Support pilot programs with data collection to evaluate impacts

B-line in Portland, Oregon

MOVEBYBike in Gothenburg, Sweden

Parcel Lockers and Pickup Hubs

- **Overview:** Centralized locations where consumers retrieve deliveries.
- Benefits:
 - Reduce failed delivery attempts
 - Consolidate delivery trips
 - Support contactless and flexible access

• MPO Strategies:

- Incentivize placement at transit stations, civic buildings, or mixed-use developments
- Encourage integration into zoning and building codes
- Partner with logistics providers to test neighborhood-scale locker systems

Curb Management Technologies

- Overview: Dynamic pricing and digital reservations for loading space.
- Benefits:
 - Optimize curb usage across times of day
 - Reduce illegal parking and double-parking
- MPO Strategies:
 - Deploy smart sensors and digital curb platforms (e.g., CurbIQ, Coord)
 - Coordinate with city DOTs to standardize curb space policies
 - Analyze curb usage patterns to inform delivery windows

Zero-Emission Delivery Zones (ZEDZ)

- **Overview:** Zones where only low/zeroemission delivery vehicles are allowed.
- Benefits:
 - Reduce greenhouse gas and pollutant emissions
 - Promote investment in electric and active freight modes

MPO Strategies:

- Identify high-traffic districts for ZEDZ designation
- Coordinate with local air quality goals and transportation equity plans
- Offer **grants or incentives** to support fleet transition

Consolidation and Micro-fulfillment Centers

- **Overview:** Small-scale facilities closer to demand centers for faster, batched deliveries.
- Benefits:
 - Reduce long-haul urban deliveries
 - Improve routing efficiency and reduce VMT

• MPO Strategies:

- Review **land use and zoning regulations** to allow flexible siting
- Assess freight impacts using tools like UrbanSim Freight
- Collaborate with local governments to plan
 logistics clusters

Off-Peak and Nighttime Delivery Programs

 Overview: Incentives to shift deliveries outside peak traffic hours.

• Benefits:

- Lower congestion and emissions during peak periods
- Improve reliability for carriers
- MPO Strategies:
 - Create **off-peak incentives** (e.g., noisecompliant loading docks)
 - Collaborate with businesses to opt into nighttime delivery programs
 - Evaluate impact with before-and-after traffic and emissions data

• Examples:

- PierPass Program, California
- OHD, New York City

Dynamic Distribution Points (DDPs)

• Overview:

- Dynamic distribution points are trucks or containers that serve as temporary, movable hubs for local distribution.
- They enable localized consolidation and staging of deliveries closer to high-demand zones—without requiring permanent facilities.

Benefits:

- Increases flexibility and responsiveness to shifting delivery needs.
- Reduces vehicle miles traveled (VMT) and trip duplication in dense areas.
- Avoids the need for long-term zoning approvals or new construction.
- Can be deployed for seasonal surges (e.g., holidays) or special events.

MPO Policy Strategies:

- Designate staging areas on underused land or during off-peak curb hours.
- Create a permitting framework for mobile depot deployment.
- Incorporate mobile hubs into urban freight plans as a low-cost alternative to micro-fulfillment centers.
- Coordinate with event organizers and local businesses for shared-use scenarios.

	Commercial PUDs (C-PUDs)	Households PUDs (H-PUDs)
Regular	Stable and slighly growing	Fast growing
	Regular and fairly predictable	Irregular, increasingly predictable
	Thousands of suppliers / carriers	Handful of number of carriers
	Specialty suppliers / carriers abound	Parcel carriers dominate
	Large number of PUD / establishment-day	Low number of PUD / household-day
	Relatively large shipment sizes	Relatively small shipment sizes
Express	Relatively small portion of total PUDs	Rapidly growing due to "free deliveries"
	Irregular, hard to predict	Increasingly predictable

Optimal Policy:

- To exploit to the fullest regular mail routes (if permitted by delivery constraints)
- To develop parcel-only (flexible) routes, regular and express, if volumes justify
- For "low volumes" and "unpredictable" express PUDs → DDPs

Parking/Congestion Issues: Genesis of Dynamic Distribution Points

Parking Demand in Manhattan

- At the ZIP code level:
 - Parking demand at 25% of ZIP codes is larger than the linear capacity of the streets
 - Moving the truck is very expensive and problematic
 - Same situation in all mid-size and large cities

DDPs and NYSERDA Eco-Transfer Project

 Objective: To produce a conceptual design for a system of "Eco-Transfer" Stations where trucks could transfer deliveries to e-bikes, to:

112

- Reduce the vehmiles traveled by trucks in congestion
- Provide a physical market place where trucks could transfer deliveries to e-bikes
- Foster use of environmentally friendly e-bikes
- NYCDOT is considering this program as part of its freight sustainability plan; parcel carriers support it
- The DDP idea is related to the Eco-Transfer Project

Basic Concept

- Dynamic Distribution Points (DDPs) are small areas that act as informal micro-hubs, where parcels can be transferred to Last-Leg Deliveries (LLD) modes
- The DDPs are flexible → can change the LLDs, or the locations of DDPs to be used in a given time-period
- Two modalities of transfer Truck-LLD:

Synchronous: The truck transfer directly to LLDs

Asynchronous: The LLDs get the PUDs from a container/small trailer

Acknowledgements

Center for Infrastructure, Transportation, and the Environment

Transportation Research Board

TRB National Cooperative Highway Research Program

Center for Infrastructure, Transportation and Environment

Center of Excellence for Sustainable Urban Freight Systems

United States Department of Energy

National Science Foundation

Thanks! Discussion

Understanding and Managing E-commerce's Impact on Urban Traffic: Insights and Strategies for MPOs

NYSAMPO 2025 Planning Conference Syracuse, NY Wednesday, May 14, 2025

Cara Wang

Professor Civil and Environmental Engineering Rensselaer Polytechnic Institute wangx18@rpi.edu

José Holguín-Veras William H. Hart Professor Director of the VREF CoE for Sustainable Urban Freight Systems Rensselaer Polytechnic Institute jhv@rpi.edu

