Customizing Forecasting Tools Using Big Data

presented to
NYSAMPO 2023

presented by
Cambridge Systematics, Inc.
Nikhil Puri

May 9th, 2023
Context

» Over 400 Metropolitan Planning Organizations (MPO) across the U.S.
» MPOs oversee the expenditure of federal transportation funds
» Planning process and decisions directly impact communities
» Good portion of the planning process relies on analytics and forecasts
 • Requires forecasting tools (yes, travel demand models!)
» Evolution of forecasting tools is needed
» Customizable data-driven forecasting tools
• Founded in 1972
• National leader in innovative solutions- travel demand modeling and data
• Authored guidelines on industry best practices
• LOCUS – Big Data platform developed by Cambridge Systematics
• Successfully developed and applied innovative, customized big data-driven models

NYMTC Best Practice Model (Big data used in Validation)
Orange County, NY (Big data-driven model)
NJ Transit (Big data-driven model)
San Francisco Bay Area (Big data-driven model)
Data - Factual information (such as measurements or statistics) used as a basis for reasoning, discussion, or calculation. *Merriam-Webster Online Dictionary*

» Big data - Extremely large data sets that may be analyzed computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions. *Oxford Languages*
 • Can be used to complement traditional data sources and fill in gaps as needed
Questions That Can be Effectively Answered Using Big Data

» What does the spatial distribution of visitors to a facility look like? In-state/out of state visitors?

» How does seasonality affect travel in a region? Proportion of weekend travel?

» Are most trips work related? Do they vary by time of day?

» What percentage of trips are from disadvantaged communities?

» How has travel changed as a result of COVID?

» How can analytical approaches be scaled?

» Can we measure the resiliency of communities after a climate event?
A Model.....

“..a simplified representation of a part of the real world-the system of interest - which concentrates on certain elements considered important for its analysis from a particular viewpoint.” - Ortuzar & Willumsen.
Model Inputs and Outputs

Inputs
- Transportation Networks
- Socioeconomic Data
- External Data
- Special Generators
- Model Parameters

Outputs
- Trips by Mode
- Traffic Volumes
- Congested Speeds
- Transit Volumes
- Summary Information
Customizing Forecasting Tools Using Big Data

» Leverage big data to develop better predictive tools
 • Large sample sizes
 • Persistent data
 • Traditional data gaps

» Additional step of ground-truthing data sources – all data have limitations

» Tools still require validation (and calibration)

» Sensitive to regional policy changes
 • Parameters representing local characteristics

» How can we use big data, technology and improved computing power to improve forecasting tools?
LOCUS – Big Data Platform

DATA CHARACTERISTICS

- Smartphones
- Location data collection by Apps
- GPS quality
- User permission

LOCATION-BASED SERVICES DATA

- Large sample size
- Messy datasets
- Spatial precision
- Persistent ID
- Anonymized
Customized Data-driven Models – SF Bay Area - transit share using a sketch planning tool

» Sketch planning tool

» Autonomous transitway corridor

» Location-based services (LBS) data + ridership data

» Transit share using travel time competitiveness
Customized Data-driven Models – Orange County, NY - model built from scratch

» No Household Travel Survey

» Estimated trip generation models using LBS data (LOCUS platform)

» Combined LBS with traffic counts for external and truck flows

» Assigned trips to existing network

» Validated model

» Approved by Interagency Consulting Group (ICG)

» Easy and quick to run
Customized Data-driven Models – New Jersey Transit - special generator + mode choice

» Non-traditional approach

» Transit ridership forecasts – 2026 Soccer World cup

» Key elements
 • Regional flows beyond current models
 • Time period slices
 • Arrival /departure patterns

» Mode sensitivity to cost and travel times
In summary….

» Distinguish between data and models
» Question data quality and whether a data source is applicable
» Leverage advantages of big data to complement traditional data
» Obtain an up-to-date picture of travel patterns and emerging trends
» Customize forecasting tools to address policy questions
» Create tools of different complexity to address range of policy needs
Thank you!

Nikhil Puri
Cambridge Systematics
Email: npuri@camsys.com
Cell: 201 926 0425