

GTFS for Transit Planning

What is GTFS?

- Transit agencies can be producers of "Big Data"
- General Transit Feed Specification (GTFS)
- Universal language for documenting transit data
- Set of text files with specified sets of attributes

	agency_TA	routes - Notepad
	calendar_dates_TA	File Edit Format View Help
		route_id,agency_id,route_short_name,route_long_name,route_desc,route_type,route_url,route_color,route_te
	calendar_TA	4069,72,KPL-NB,KPL: Poughkeepsie - Kingston ,,3,https://r.peaktransit.com/res/72/2021_Aug_KPL_P-K.png,80
	routes TA	3851,72,UPL-EB,UPL: New Paltz - Train Station - Grand Central,Ulster-Poughkeepsie Link,3,https://r.peakt
	Toutes_IA	4066,72,KS-SB,KS: Saugerties - Mall - Kingston,,3,https://r.peaktransit.com/res/72/2021_Aug_KS_S-K.png,4
	shapes TA	3845,72,EU-SB,EU: Kingston - SUNY Ulster - Ellenville,,3,https://r.peaktransit.com/res/72/2021_Aug_EU_K-
		11937,72,Yellow,Yellow: DSS to Port Ewen,DSS to Port Ewen,3,https://r.peaktransit.com/res/72/2021_Aug_Ye
	stop_times_TA	4070,72,R-NB,R: New Paltz - Kingston,,3,https://r.peaktransit.com/res/72/2021_Aug_R_N-K.png,7f7f7f,FFFFF
		3847,72,KS-NB,KS: Kingston - Mall - Saugerties,,3,https://r.peaktransit.com/res/72/2021_Aug_KS_K-S.png,4
	stops_IA	3854,72,Z-WB,Z: Kingston - Woodstock - Pine Hill,,3,https://r.peaktransit.com/res/72/2021_Aug_Z_K-P.png,
	tring TA	4073,72,Z-NB,Z: Pine Hill - Woodstock - Kingston ,,3,https://r.peaktransit.com/res/72/2021_Aug_Z_P-K.png
	L mbs_na	3849,72,NPL,New Paltz Loop,,3,https://r.peaktransit.com/res/72/2021_Aug_NPL.png,9bbb59,FFFFF,6
		4071,72,W-NB,W: Plattekill - Wallkill - New Paltz,,3,https://r.peaktransit.com/res/72/2021_Aug_W_W-N.png

3850,72,R-SB,R: Kingston - New Paltz,,3,https://r.peaktransit.com/res/72/2021 Aug R K-P.png,7f7f7f,FFFFF

What is in a GTFS Data Set?

- Required
 - Agency/Feed Info
 - Stops/Stop Times
 - Routes
 - Trips
 - Calendar/Dates
- Optional
 - Fare Attributes/Rules
 - Shapes
 - Frequencies
 - Transfers
 - Others...

Working with GTFS Data

- Sources of GTFS data:
 - <u>https://511ny.org/developers</u> /resources
 - Agency generated
- Bring .txt file into Spreadsheet or GIS
- Join additional data sets
 - Ridership
 - Travel times
 - Land use
- Map/Analyze

	Α	В	С	D	E	F
1	trip_id	arrival_time	departure_ti	stop_id	stop name	stop_sequ
2	1081052	8:35:00 AM	8:35:00 AM	4995	WHITE PLA	26
3	1081053	9:35:00 AM	9:35:00 AM	4995	WHITE PLA	26
4	1081050	4:00:00 PM	4:00:00 PM	4995	WHITE PLA	26
5	1081051	12:40:00 PM	12:40:00 PM	4995	WHITE PLA	26
6	1081056	10:35:00 AM	10:35:00 AM	4995	WHITE PLA	26
7	1081054	4:55:00 PM	4:55:00 PM	4995	WHITE PLA	26
8	1081055	2:00:00 PM	2:00:00 PM	4995	WHITE PLA	26
9	1083109	8:30:00 AM	8:30:00 AM	4991	WHITE PLA	1
10	1083106	9:25:00 AM	9:25:00 AM	4991	WHITE PLA	1
11	1083107	10:25:00 AM	10:25:00 AM	4991	WHITE PLA	1
12	1083104	3:10:00 PM	3:10:00 PM	4991	WHITE PLA	1
13	1083105	11:00:00 AM	11:00:00 AM	4991	WHITE PLA	1

Weekday Lane Use (Spring 2022)

TransCenter Usage by Time of Day

Time of Day

GTFS Applications

- Integration with developer API
 - Trip planners
- Integration with GIS
 - Route Alignments
 - Stop Locations
 - Ridership by Stop/Route
 - Segment Run Times
 - Frequent Service Corridors

Minutes Matter: A Bus Transit Service Reliability Guidebook

To view the report, visit:

https://www.nap.edu/read/25727/chapter/1

To download, visit: <u>http://www.nap.edu/download/25727</u>

Why is Reliability Important: Travel Time Budget

- If a trip normally takes 20 minutes, but takes 30 minutes once a week — a very typical situation for bus riders — then the customer must budget 30 minutes
- By reducing trip length variability, an agency can save customers time, without speeding up buses!

Guidebook: Selecting Measurements, Standards, and Monitoring Data

• Comprehensive list of measures

• The metrics selected must inform standards or targets to measure goals being accomplished

Aspect of Reliability	Data Needed	Reliability Measure		
Punctuality	Arrival and departure times	On-time performance/schedule adherence		
	Trip start and end times	Running time		
	Dwell time at stops	Dwell time		
Voriability		Travel time		
variability	Customer travel times	Buffer time indices		
	Time between buses	Headways		
	Customer wait times	Wait times		
		Pullouts missed		
	Records of missed service	Missed hours of service		
Non-operation		Scheduled trips cancelled		
	Counts of service	Number of crashes		
	disruptions	Mean distance between failures		
Multiple	Customer surveys	Passenger ratings of reliability		

Guidebook: Reliability Treatment Menus Physical

- Encourage roadway agencies to incorporate bus-supportive features
- Far-side stop placement
- Dedicated transitways
- Queue jump lanes
- Level boarding and low-floor buses
- Right-sized terminals and layovers
- Curb extensions at bus stops
- Articulated buses

BRT Stop Consolidation Case Study

Study Goals:

- Identify factors that suppress BRT ridership
- Assess stop locations in BRT corridors
- Improve efficiency in BRT corridors
- Encourage use of new BRT service

Bus Stop Spacing Standards

Stop removal standards based on:

- Transit development plan/existing stop spacing standards
- Sidewalk network/ability to walk to/from nearest stop
- Transit network/ability to transfer
- Transit dependent land uses
- Ridership?

Existing Conditions – Desktop Evaluation

- GTFS data for all stops
- Filter to stops along BRT corridors
 - By Route? Join Route Data
 - By Location?
- Identify travel direction
 - GTFS Data?
 - Ridership Data?
- Calculate distance
 - Move stops to line first!

Identify Route Direction

Identify Stops Below Standards

Existing Conditions - Field Visit

- Confirm stop locations and route info
- Assess pedestrian network
- Identify transit dependent land uses

Findings

- 355 Stops located along BRT corridors
- 60 Stops recommended for removal
 - Some were already inactive due to local service restructure
- Two new stops proposed in Downtown Albany

CDT Bus Stop Consolidation Data Viewer

😂 😑 😗 🖪

Thank You

Contact Info

Creighton Manning Engineering, LLP

Presenter: Jesse Vogl, AICP

